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Besides asymptotic methods TJ]. the method of orthogonal polynomials B-121 has become 
quite widespread in recent years in investigations of complex mixed problems of elasti- 

city theory. Its essence is the following. The mixed problem is reduced td the solution 
of an integral equation of the first kind, some domain of variation of the dimensionless 

parameters in the kernel of the integral equation is considered, and the principal (singu- 
lar) part of the kernel which correponds to the selected domain of parameter variation 

is isolated. Eigenfunctions of the integral operator corresponding to the principal part of 
the kernel are found, where in the majority of cases known at present some system of 

classical orthogonal polynomials turns out to consist of eigenfunctions. The known func- 

tion in the right side of the integral equation, and the solution are expanded in a series 

in these polynomiab.The regular part of the kernel is expanded in a double series. After- 
wards, the integral equation is easily reduced to an infinite algebraic system. under 
appropriate truncation ( l ) of the infinite system, the matrix of the final system obtained 
turns out to be almost triangular, which permiu sufficiently easy numerical solution of 
the problem. 

A foundation for the method of orthogonal polynomials, and a numerical example for 
the integral equation 

s’&)K(v) e==f(x) (Isl<~), K(t) = &%o.s.tdu (0.1) 
-1 0 

Ii -L(u),<P~ R,zd (O<U<C~)~ L(u)- Au (u 40) (0.2) 
i=o 

are given in Sects. 1 and 2. Here Y, I$, A are positive constants, and the function 

L (u) is bounded for 0 < u ( 00. The scheme of the orthogonal polynomials method 

for equations of the type (0.1). (0.2) is substantially elucidated in (2. 4, 5, 9, 121. 
The scheme of the orthogonal polynomials method for the integral equatfon 

is presented in Sect. 3. 

Here ha (0, oo) and k E: (O,,i) are dimensionless parameters, G is a sufficiently 
smooth function and symmetric relative to E, 5. Equations of type (0.3) originate in 
investigations of plane, mixed problems, even in x, and with two contact sections, in elas- 
ticity theory. 

1. Let us note that a kernel K (t) of the form (0. I) can be represented as ill 

l ) see below for details. 
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K (t) = -1nltl- F(Q, F(q =poly+-e-“(ju (1.1) 
0 

Utilizing (0.2). it can be said that the function F (t) is contfnuous with all its derfv- 

ativesinO<Itj<~. 
On the basis of (1.1) let us rewrite the integral equation (0.1) as 

1 

- cp*(%Vn - s 
-1 

“,“‘@=nf+(x)+ (q&F (‘T)d% (l=lIl) (I.21 
-1 

fz+ (4 = f s’ ‘po (E) [F (‘y) - F to)] 4, cp (E) = cp, (%I + ‘pe (%I (1.3) 
-1 

where ‘p. (&) is determined from the equation 
1 1 (4.4) 

- s ‘PO (E) In v d% = nf (z) + F (0) PO (I 2 I < I), PO = 5 
-1 

_-l (PO (%) d% 

Theorem 1.1. If f’ (z) E Lt4/3+oI (-1, 1), the solution of the integral equa- 
tion (1.4) exists, is unique, belongs to J&,-~) (-1, 1) and has the form 

(1.5) 

Moreover, if the solution of the integral equation (1.2). (1.3) exists in L, (-4, 1) 
for h EE (0, oo) , it has the form 

‘p* (z) = 0, (z) (1 - zs)-r/s (1.6) 

where the function Ur, (z) is continuous with all its derivatives for s E I-l, 11. 
The proof of this theorem is actually contained in p, 5,12, 133. 
We shall assume that the conditions of Theorem 1.1 are satisfied. and the function 

f (2) is even (the even case of the integral equation (0.1)). As has been shown in 114, 

153, the solution for the odd case can be obtained from a special even solution by differ- 

entiation. 
Let us seek the function @* (s)in the relationship (1.6) ln the form of the following 

series!of Chebyshev polynomials: 

@* (2) = : SkTak (r) (I = I d i) (1.7) 
k=o 

The series (1. ‘7) converges uniformly fl6] by virtue of the properties of the function 
@* (2) mentioned in Theorem 1.1, 

Let us also expand a function f* (5) of the form (1.3) into the series 

f* (5) = io&Tsk @) (I = I Q i) (1.8) 

On the basis of the above-mentioned properties of the functions ‘p. (z) and F (t) it is 
not difficult to show that the function f* (z) is continuous with its derivatives. Hence, 
the series (1.8) also converges uniformly to f, (2). 

Finally, let us expand the function F (t) (0 < I t I < oo) in a double series of 
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Chebyshev polynomials. We have 

F(‘y)= 5 i [Cm, (h) Ten (4 T,, (8 + . . -1 (1.9) 
m=o n=o 

Terms containing Chebyshev polynomials with odd indices are not written down in the 
relationships (1.9) ; they will not be needed henceforth. 

Utilizing the known orthogonality property of Chebyshev polynomials, we obtain 

Cmn(h)=#(F (cos~~cos~)cos2m~cos2n~dlpd~ (1 .lO) 
0 0 

PO0 = 1, Pm0 = Fan = 2, Pm = 4 

Lemma 1.1. For all values 0 < [ t 1 = 1 E - z 1 h-l & ii%-’ < 00 the series 
(1.9) converges uniformly to F (t) in the set of variables E, Z. The following estimates 

hold for the coefficients of the series c,, (h): 

ICmn(h)I~‘FmnmaxIF(t)l (1.11) 

IC,,(h)I'< dh-3[(n2- l)n]-l (d = const, n & 2) (1.12) 

G,,,,(h)l,( D?P[(m2 - l)(n2 - l)mn]-1 (D=const, m>2, n>2) (1.13) 

cm (A) - 09 (m # 4, C,, (h) - In 21 

c,, (A) - m-1 (m>l) for h-+0 (1.15) 

The estimate (1.11) follows at once from (1.10). The estimates (1.12) and (1.13) 
are obtained from (1.10) by integration by parts. Uniform convergence of the series 

(1.9) results from the estimate (1.13). 
To prove the estimates (1.14), (1.15). let us substitute the expression (1.1) for the 

function F (t) into (1.10). Integrating, we represent the coefficients C,, (a)as 

Coo(h) = s 
co II-_((Ir)]Jo2(u/h)---Udu 

U 
(Jo (~1 is the Bessel function) 

0 

c,, (N = k-1) (m+n>l) (1.16) 

0 

On the basis of (1.16), taking account of the estimate (0.2) and 

t ’ 
I Jzs (3 I4 * -?j- t ) 

2s 
(X>O, SW) (1.17) 

we obtain (1.15) and (1.16). 
Let us note that for h > 2 1 v uniformly convergent expansions can also be obtained 

for the coefficients C,, (h) . 
An estimate of type (1.12) holds for the coefficients Rk, of the series (1.8). namely : 

I R,t* 1 < C [(Ii” - l)kl-’ (C =conat, k > 2) (1.18) 
Moreover, the following formulas are valid D2]: 
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Rr* = Cko (A) Ro IIn a - F (0)1-l + 5 nckn (A) R, 
fl=l 

R o~=Ro[CO~(~)_-~(~)~,~~~--(O)I-~+~ raC,,(h)R, (1.19) 
n=1 

2l 
s 

f (d T%(z) & = 2Ro(n= 0) 
ii- -l JG=Y %(n #O) 

We finally obtain relationships to determine the coefficients fR in (1,7). 

Theorem 1.2. A sequence of numbers S, belonging to I1 and satisfying infinite 

system of linear algebraic equations 

corresponds to any solution ‘p* (z) of the integral equation (1.2) from the class 

L, (--I, 1) , and vice versa. 

For the proof, let us substitute the functions (p,(t), f*(z) and F (t);in the form (1.6)- 

-(1.9) into the integral equation (1.2), and let us evaluate the integrals by utilizing 
formula (2.7) from [S], and the orthogonality property of Chebyshev polynomials. We 
obtain a relationship in whose right and left sides there are series in even Chebyshev 

polynomials. Equating coefficients on both sides of polynomials of the same number, 
we obtain the infinite system (1.20). 

Taking account of the fact that the function @, (2) is continuous with all its deriva- 

tives, we can prove that the sequence of numbers Sk belongs fo the class ZP, p > 1. In 

order to see this. it is sufficient to obtain an estimate of the type (1.8) for the numbers 

Sk.. 

Now, let the sequence Sqbe the solution of the infinite system (1.20) and let it belong 
to II. Then the series (1.7) converges uniformly to some continuous function Q’+ (4 for 

z E f--1,11. By an inverse transformation of the infinite system (1.20). into the integral 

equation (1.2) it is easy to see that the function q*(z)‘= De (z) (1 - ~a)-“~, which belongs 

to L, (-i,i), is a solution of (1.2). 

a, Let us rewrite the system (1.20) in the more convenient form 

So (In 2h - C,,) = R,, + + g &Co, (2.1) 
n=1 

co 

xi = 2 UikZk + bi (i = 1,2, . . .) (2.2) 
k=l 

Xi = si (%)-l, &k = kCik, bi = Ri, f S&f*, 

Let us note that 

p = $ GJ 4 = s’ [cp, (5) + ‘p* WI (9 = PO + p* 
-1 

(2.3) 

where PO has the form (1.5) and P, is given, by virtue of the relationships (1.6). (1.7). 
by the simple formula 
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P, = ns, (2.4) 
By assumption go* (z) E Lt (-4, i), therefore 1 s,, 1 C 00. 
Solving the infinite system (2.2). we then find S,, from (2.1). 
Theorem 2.1. The infinite system (2.2) is quasi-completely regular for A > 0. 

If its bounded solution exists, the sequence xi belongs to I,, p > 1. As h 3 0 the 
determinant of the system tends to zero. 

As is known 071. an infinite system will be quasi-completely regular, if 

Ai= 5 l”&C” (i=l.a....N) 

Z-1 

A,<i--e<i (bN+l. N-H,...) (2.5) 

br 6 f~6 (i=N+-1, N+a,.. .) 

The compliance with conditions (2.5) for X > 0 follows easily from the estimates 

(1.11) - (1.13),(1.18). 
Now, let a bounded solution of the system (2.2) be found 

IzilGx (x=const) (2.6) 
We then have 03 

I =j I 6 x 2 I ‘*I I + I b, I (2.7) 
k=l 

or on the basis of the estimates (1.12). (1.13) and (1.18) 

1 a!* I ( 2* [(P - i) q-1 (~=const, i>Z) 

It hence follows that (zi) E I,,, p > 1. 

(2.8) 

It follows at once from the estimate (1.15) that the determinant of the system (2.2) 
tends to zero as h .+ 6 . 

On the basis 01 the theorem proved it can be. concluded that the existence and unique- 

ness of the solution of the infinite system (2$2) for h > 0 reduces to the existence of 

a solution of an infinite system of the first Nequations. For h < 1 the matrix of the 
system (2.2) becomes poorly specified. Under the condition (2.6) the series in (2.1) 
converges absolutely on the basis of the estimates (2.8) and (1.12). 

Theorem 2.2. For A > h, the infinite system (2.2) is completely regular. 
For the proof we estimate the quantities Ai (i = 1, 2 , . ..). On the basis of the estimate 

(1.14) we have 
Ai< 2 i ‘t 5 (2i +(;2” &- I)1 (&)2Ctak (2.9) 

j=o (21)1 4 k=l 

By mathematical induction it can be proved that 

(2.10) 

where m is the integer part of the number (r - 1)/2. Taking account of (2.10) the esti- 

mate (2.19) becomes 

A,(2 i B. 
(4f + 2j)ll qs+s 

io 3 vi (!%!#)I (1 - q3s*+fi1 
=A** (cJ=&) (2.11) 
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It hence is seen that all At < 00, provided that I q < i, I > l/o. 

Now, let us find the condition for which A:+i < Ai (i > i). On the basis of (2.11) 

we have (2.12) 

let us note that for any fixed q < 1 and f > i the numbers Dtj (q) decrease mono- 
tonously as f increases, and for j = 6 the numbers DiO (q) = 4@ (1 - qa)-‘. 

Therefore, the inequality (2.12) will be satisfied for all 1 and j, if 

D, (9) = 3-V (3 + s) (4 + s) (1 - 9’)-’ < i (2.13) 

We hence find the greatest ql and its corresponding 4. 

let us now clarify when Ali < 1. On the basis-of (2.11) we have 

(2.14) 

We hence find the greatest 48 and its corresponding k. 
From all the above there results that the system (2.2) is completely regular for 

A > 4 = sup CM, %I k) (2.15) 

It follows from the theorem proved that for a > I,, the infinite system (2.2) has a 
unique bounded solution, and therefore, a solution in Ip, p > 1 (see Theorem 2.1). 

which can be obtained by successive approximations. 

As an illustration, let us examine the problem of impression of a stamp on an elastic 
strip lying on a rigid foundation. There are no friction forces between the stamp and the 

strip, as well as between the strip and the foundation. 

As is known n8]. this problem can be reduced to the solution of an integral equation 
of the form (0.1). The function L (u) is given by the second formula in (1.14) in n8]. 
It is easy to see that it satisfies conditions (0.2), where 

s= i, v = 2, B. = 2, B, = 4 (2.16) 

In conformity with (2.16). we find by the scheme described above that the solution of 

the mentioned problem exists and is unique in i, (-i,i) if f’ (2) E ,&,,) (-i,i) and 
n> ho =0.863. 

Let us utilize the method of reduction to find the approximate solutions of the infinite 
system (2.2). 

Let us note that any truncation of the series (1.9) for F (t) automatically results in a 
corresponding truncation of the infinite system (‘2.2). Hence. it is natural to truncate the 

series (1.9) in such a manner as to obtain, as a result, a solution of the infinite system 
convenient for practice. 

Proceeding from the above, let us retain only terms for which m + n d r in the series 
(1.9). It is then easy to see that the finite system of linear algebraic equations obtained 
is of the form t-_i 

ti= 2 eilrZk + bir, bi’ = l?;. + SoCi,, (L = 1, 2, . . . r) (2.17) 
It=1 

The relationship (2.1) also changes form somewhat 

SO (In 23, - COO) = R& + + i S,C,, 

bl 
(2.W 

The superscript r in the quantity R; means that the summation over n must be made 
. 
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up to r in (1.19). 
The rather unusual truncation of the infinite system (2.2) described, results in a ques- 

tion on the convergence of the method of reduction. 

Lemma 2.1. Let be given a sequence of completely regular infinite systems 

xi = i ‘L xk + bir, Ibi’IBC, (2.19) 
k=l 

as well as the completely regular infinite system 

Moreover, let 

‘i= 5 ‘ikzk + ‘iv I bi I G C (2.20) 
k=l 

lirn~~~=a~~, lim bir= bi for r + 00 (2.21) 

Then if yr is a solution of the system (z&19), and zi of the system (2.20). then 

limzir=xi for r-boo (2.22) 

The lemma presented is a particular case of Theorem III (Ch. I, Sect. 2 in 1171). 
It follows from the lemma that the method of reduction expounded above converges, 

i. e. the solution yr of the truncated system (2.17) tends to a solution of the infinite 

system (2.2) as r--t CO if h > &. For ho > h > 0 the method of reduction evidently also 
converges if the following finite system is solvable : 

xi= 2 aikzk + bi (i=l,z....iv) (2.23) 

k=l 

A practical solution of the truncated system (2.17) is produced simply enough because 
its coefficients form an almost triangular matrix. After the quantities xi have been deter- 

mined from the system (2.17). we find SO from the relationship (2.18). and then the 

approximate solution of the integral equation (0.1) by means of (1.3), (1.5)-(1.7), (2.2). 
The summation over k in (1.7) is carried out up to r. 

Let us note that for a given accuracy of the approximate solution of the integral equa- 
tion (0.1) and a decrease in the parameter h the number of equations in the truncated 
system (2.17) must be increased. This follows from the fact that the series (1.9), as can 

be shown on the basis of (1.15). will diverge on the line’ E = z as X + 0. 
It should be noted that if the function f (5) is sufficiently smooth, it is expedient to 

separate the solution cp (j) into the components 90 (E) and ‘p+ (E); in this case the method 

expounded above must be applied directly to the integral equation 

1 

- s cp (El ln (14s) (2.24) 

-1 

As an illustration, the above-mentioned problem of impressing a flat stamp (! (5) z 1) 
on an elastic strip was considered. The coefficients C,, (k) of the series (1.9) were 
computed on an electronic computer and are presenteh in Table 1. 

The approximate solutions of equation (0.1) are finally represented as 
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cp (z) = (1 - ~2)~“’ i ditai, 9 = lint cp (z) (I - 2”) “l for 3 4 1 (2.25) 
(=O 

The coefficients d, are given in Table 2. 

Some characteristics of the solution (2.25) with appropriate data obtained by asymp- 
totic methods in p3, 14, 191 are compared in Table 3. 

A=2 

-0.2376 
0.5139.10-r 

-O.9356.lO-2 
-0.6062~iO-3 

2 0.9652 
1 1.909 

‘la 2E7 l/r . 

x=i 

-0.1064*10-’ 
0.1204 

-0.7736.10-r 
-O.1965.1O-2 

0.7912.10-2 
-0.7350*10-4 

A = a/* A = 11, 

0.3946 0.9180 
0.1556 0.1317 

-0.2843 -0.5268 
0.1047.10-r 0.3546.10-l 
0.5436.10-l 0.1037 

-0.40i2~10-2 O.2613.lO-2 
-0.1610~10-1 -0.1412 
-0.3780.10-2 0.1055.10-’ 

--10-S -0.1460*10-2 

A / i=O 1 i=l 1 i=2 ) i=3 1 i=4 i=5 ( i=6 
4 I 

-0.198 0.0169 
-0.925 0.139 
-2.435 -2.640 
-4.01 -1.30 

Table 1 

-r 
nn A = If, 

E 
0.4322.10-l 

-0.2954.10-2 
-0.2633.10-S 

z 
-0.4656.10-r 
-0.1415~10-~ 

51 -0.6380~10-3 
60 0.1320.10-” 

Table 2 

h / 2 1 2[13] / 2[19] / 1 

WO) 0.965 0.967 0.968 1.909 

W/z) 1.059 1.074 1.05 
z 0.784 2.742 0.809 2.800 0.790 2.75 

:?E 
41712 

0.00352 
1.843 -10-4 
2.03 -7.47 

1.92 3.937 3.97 8.000 7.991 
1.95 3.955 3.92 7.978 7.941 
1.12 1.638 1.58 2.263 2.257 
4.70 8.70 8.71 16.71 16.71 

7.18 -1.72 

Table 3 

3, Let us turn to an examination of the integral equation (0.3) ; let us make a change 
of variable therein, and introduce the following notation 

x = vm, E = v/k’%9 + kz, k’ = 1/i - k2 

tp+ (v) = k’% (k’2v2 + ka)-“29 ( vk’2v2 + k2), f, (u) = f (vV2ua + k2) (3.1) 

G, +, f,e 
( ) 

=G(fp-%2+~a, 1/p-%“+tt”,~) e=k A’ P’$ 
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We have 

dv(O<udV (3.2) 

Let us note that Eq. (3.2) is substantially an even modification of an integral equation 

of the type (2.24). We seek the solution of (3.2) in the form 

‘p+ (v) = ‘PO (v) + 91 (v) (3.3) 
where ‘p. (v) is determined from (1.4) and has the form (1.5) if x, 5, f (z) and F (0) 
in the formulas mentioned are replaced by u, p, f+ (u) and G+ (0) , respectively. The 

function ‘pr (n) is then found from (3.2) in which it is necessary to take 

(3.4) 

in place of f+ (u) . 
We seek qrl (v) in the form 

‘pr (u) = CD1 (v) (1 - us)-% 

Let us expand the functions G+ (v / ‘p, u 1 p, 8) and fl (U) into the series 

G, (,$ , $ , 8) = m!. ;+ e,,,, (IL, 8) T,, (U) TM (t’), 

(3.6) 

f l(U) = i RaT,i @) 

Formulas analogous to (1.10) and (1.19) hold for the coefficients en,, (p, e) and & 
Substituting (3.5). (3.6) into the integral equation for ‘pr (u) and performing all the 

required operations, we arrive at an infinite system in @ 

Just as for (1.20), the approximate solution of the system (3.7) can be found by the 

method of reduction described in Sect. 2. 
Under appropriate constraints imposed on the function G (5 / h, z / h, k / h) a foun- 

dation can be supplied for the method of orthogonal polynomials for equation (0.3) just 

as has been done for (0.1) above. 
Let us note that the scheme elucidated ln [12] for the method of orthogonal polyno- 

mials for (1.3) can also be given a vigorous foundation. 
The authors are grateful to G. Ia. Popov for indicating a number of defects in 1121, 

which served as a stimulus for writing the present paper. 
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